EBS01A

Переключатель кодирующего устройства Руководство пользователя Ред. 1.6 Январь 2012

microBi elettronica

via ss. Vito e modesto n° 8 33019 Tricesimo (UD) Tel: 0432 416915 Fax: 0432 1841024

> www.microbi.biz info@microbi.biz

Дата	Редакция	
Сентябрь 2007	1.0	Первое издание
Январь 2008	1.1	Содержит изменения в версии 1.2
		С добавлением процессов «Split1» и «Split2»
Февраль 2008	1.2	С исправлениями в схемах на страницах 19/21/24/25
		Изменена компоновочная схема
Июнь 2008	1.3	Стр. 14 нумерация клемм
		стр. 15/16 таблицы клемм
Сентябрь 2011	1.4	Стр. 6 Таблица 1 - изменена
		Страница 8 – ошибка в схеме линии электропередачи под
		номером 19х
		Страница 8 – ошибка в соединительных перемычках 112 и
		113 на схеме линии электропередачи
Январь 2012	1.5	Стр. 5 Обратите внимание, использование цифровых входов
Январь 2012	1.6	Стр. 24 Таблица изменена

1 ПЕРЕКЛЮЧАТЕЛЬ КОДИРУЮЩЕГО УСТРОЙСТВА EBS01A	5
1.1 – БУФЕРНЫЙ РЕЖИМ	
1.2 – РЕЖИМ «SI SPLIT I»	6
1.3 – РЕЖИМ «SII SPLIT II»	6
1.5 – Фильтр входящих сигналов	7
1.6 – Питание платы	7
2 ТЕХНИЧЕСКОЕ ОПИСАНИЕ:	9
2.1 – АБСОЛЮТНО МАКСИМАЛЬНЫЙ РЕЖИМ РАБОТЫ:	9
2.2 – РЕКОМЕНДОВАННЫЕ ПАРАМЕТРЫ:	
2.3 – Дифференциальный вход кодирующего устройства	
2.4 – Двухтактный вход кодирующего устройства	
2.5 – ДРАЙВЕР ВЫХОДА	
2.6 – Цифровые входы	
2.7 – РЕГУЛИРУЕМЫЕ ВЫХОДЫ ПИТАНИЯ	
2.8 – МЕХАНИЧЕСКИЕ РАЗМЕРЫ:	
2.9 – Нумерация клемм	
2.10 – Клеммы на стороне выхода (Верх)	
2.11 – КЛЕММЫ НА СТОРОНЕ ВХОДА КОДИРУЮЩЕГО УСТРОЙСТВА (НИЗ)	
<u> ПРИЛОЖЕНИЕ A EBS01 – ПЛАТА КОДИРУЮЩЕГО УСТРОЙСТВА</u>	17
А.1 – Положение перемычек при выборе режима работы	18
11.1 110310 KEHHE HEI ENDI IEK III II DUBOT ET EKHWAT I ABOTDI	10
при поление в	10
ПРИЛОЖЕНИЕ В – В.1 - EBS01 – ВХОД ПИТАНИЯ	19
В.2 - EBS01 – ВХОД ПИТАПИЯ	
В.3 – Положение перемычек при выборе питания платы	
D.3 110310/ALTITLE FILE ENDI TER TIL TI DBIDOT E TIATTATIAN TRATTATIAN ANTICONOMICALISME	20
HDI HOMEHUE C. EDCOL. DVOHIOŬ HUTEDAEŬC	21
<u> ПРИЛОЖЕНИЕ С - EBS01 – ВХОДНОЙ ИНТЕРФЕЙС</u> С.1 – Положение перемычек конфигурации входа	<u> 21</u>
С.1 – ПОЛОжение перемычек конфигурации входа	44
u u	
<u> ПРИЛОЖЕНИЕ D - EBS01 – ВЫХОДНОЙ ДРАЙВЕР</u>	
D.1 – ПОЛОЖЕНИЕ ПЕРЕМЫЧЕК ПРИ КОНФИГУРАЦИИ ВЫХОДА (СТОРОНА ПОЛЬЗОВАТЕ	
ДРАЙВЕРА ВЫХОДА)	24
ПРИЛОЖЕНИЕ Е - EBS01 – ЦИФРОВЫЕ ВХОДЫ ДЛЯ ВЫБОРА СОЕДИНЕННЫХ	
<u> ПРИЛОЖЕНИЕ Е - EBS01 – ЦИФРОВЫЕ ВХОДЫ ДЛЯ ВЫБОРА СОЕДИНЕННЫХ ВХОДНЫХ КАНАЛОВ КОДИРУЮЩЕГО УСТРОЙСТВА</u>	25
<u> ПРИЛОЖЕНИЕ F – СВЕТОДИОДЫ (LED) И ТРИММЕРЫ</u>	26
ш пложыны г – Сретодноды (рер) и 11 ишпеты	<u>4</u> 0
<u> ПРИЛОЖЕНИЕ G – ПЕРЕМЫЧКИ НА ПЛАТЕ EBS01A РЕД. 1.1</u>	<u> 27</u>
ПРИЛОЖЕНИЕ Н – АДАПТЕР ДЛЯ ОПТОИЗОЛИРОВАННЫХ ВЫХОДОВ	28

1.- Переключатель кодирующего устройства EBS01A

Кодирующее устройство «EBS» - это интерфейсная плата, которая способствует соединению и адаптации сигналов между устройствами управления и кодирующими устройствами. Он помещен в жесткий металлический корпус с креплением для DIN-рейки, плату легко можно

установить на электрические пульты и ее конфигурация может изменяться для различных режимов работы, включая полезные тестовые функции.

ев входами кодирующего устройства, сформированными сигналами A, B, Z, как в дифференциальной конфигурации, так и в двухтактной. Для увеличения помехоустойчивости каждый

Вывод 1	Вывод 2	Вывод 3	Вывод 4	Выбор цифрового вывода	
Opto 1 (опция)1	Opto 2 (опция)	Opto 3 (опция)	Opto 4 (опция)	Линейный регулятор V1	
	Линейный регулятор V2				
	Линейный регулятор V3				
	Линейный регулятор V4				
Вход кодировщика 1	Вход кодировщика 2	Вход кодировщика З	Вход кодировщика 4	Переключение V	
	·				

Рисунок 1: блок-схема платы EBS01A

вход обрабатывается цифровым фильтром. Драйвер выхода на EBS01A может ассоциироваться с любым из входов кодировщика, локально или дистанционно, с помощью оптоизолированных цифровых входов. Каждый выход может питаться в различных режимах, выбирая среди доступных настроек напряжения на плате или с использованием внешних источников. В этом случае выход может быть оптоизолирован с добавлением дополнительной цепи EBS01A-OPTO. Каждый выход может распределять 90мА (по 30 мА на канал); выходы может соединяться параллельно, когда требуется более высокий ток.

Режим работы

Плата EBS01A имеет три режима работы, которые можно легко выбрать с помощью перемычек на плате.

Внимание: в случае использования цифровых переключателей 61, 62, 63 и 64 убедитесь в том, что версия аппаратуры соответствует rev.1.3 или выше.

1.1 – Буферный режим

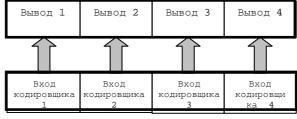
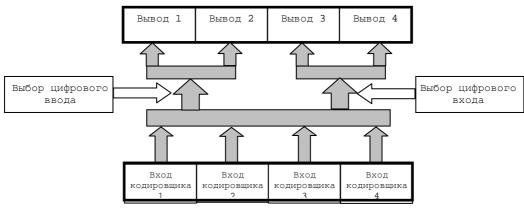


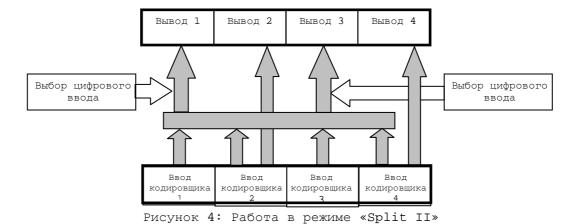
Рисунок 2: Работа в буферном режиме

В данном случае каждый из четырех выходов воспроизводит статус соответствующего входа.

Ред. 1.6 5/29

1.2 – Режим «SI split I»




Рисунок 3: Работа в режиме «Split I»

В рабочем режиме «SI split 1» выходы разделяются на две пары; О1,О2 и О3,О4. Каждая пара воспроизводит сигналы на выбранном выходе кодировщика через цифровые входы, как описано в таблице, представленной ниже:

Таблица 1: Выбор входов кодирующего устройства относительно цифровых входов

Цифровые входы		Выход 1,2	Цифровые входы		Выход 3,4
12	I1		I4	13	
0	0	Кодировщик входа1	0	0	Кодировщик входа3
0	1	Кодировщик входа2	0	1	Кодировщик входа4
1	0	Кодировщик входа3	1	0	Кодировщик входа1
1	1	Кодировщик входа4	1	1	Кодировщик входа2

1.3 – Режим «SII split II»

В режиме «SII split 2», выходы О2 и О4 всегда воспроизводят сигналы соответствующих входов I2 и I4, не учитывая конфигурацию цифровых входов, а работа выходов О1 и О3 остается такой, как описана в режиме «Split 1».

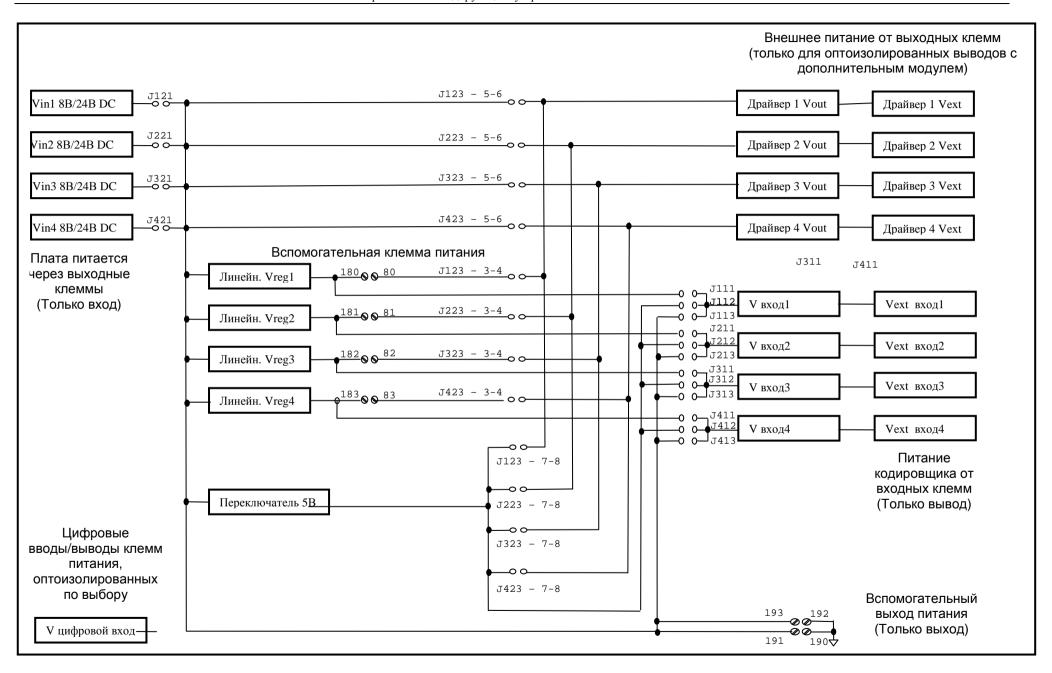
1.4- Тестовый режим

В данном случае сигнал кодировщика A/B/Z из 32 импульсов/циклов с частотой в 31.25 к Γ ц моделируется на всех четырех выходах.

Рисунок 5: Работа в режиме тестирования

1.5 - Фильтр входящих сигналов

Для увеличения помехоустойчивости платы EBS01A, все входы сигналов кодировщика отбираются логической схемой управления с программируемой частотой. Четыре имеющихся частоты сбора данных указаны в таблице, представленной ниже:


Таблица 2: показания фильтра входящих сигналов кодировщика

Выбор	Частота сбора данных	Задержка на выходе
00	125кГц	16мкс
01	250кГц	8мкс
10	500кГц	4мкс
11	1МГц	2мкс

Схема логического контроля сравнивает последние три полученных данных и применяет 2 из 3 критерия большинства, чтобы установить значение соответствующего выходного сигнала. Минимальная задержка между входом и выходом, следовательно, составляет 2 мкс. При уменьшении частоты выборки увеличивается помехоустойчивость, но также увеличивается и время задержки между входом и выходом.

1.6 – Питание платы

Интерфейсная плата EBS01A может питаться от любого из силовых входом на клеммах на стороне выхода. Внутри, плата имеет 4 независимых настраиваемых линейных регулятора. Каждый из них может обеспечивать выход, варьирующийся от 8 до 24 В, и распределяет максимальный ток в 300 мА. Выход регулятора защищается от инверсии полярности и коротких замыканий самовосстанавливающимся плавким предохранителем. Плата также включает импульсный стабилизатор с выходом в 5 В, который используется для питания платы изнутри и может питать секции входа/выхода. Выход стабилизатора защищен самовосстанавливающимся плавким предохранителем; изнутри плата поглощает примерно 0,5 А, так что 0,5 А остаются доступными для драйверов входа/выхода. Блок-схема, представленная ниже, показывает возможные комбинации для регуляторов мощности платы:

2.- Техническое описание:

2.1 – Абсолютно максимальный режим работы:

Напряжение питания	B DC	8B÷30B
Рабочая температура	$\mathrm{T_{F}}$	0°C÷85°C
Напряжение на цифровых входа выбора	V_{M}	8B DC÷30B DC

2.2 – Рекомендованные параметры:

Напряжение питания	B DC	10B DC÷24B DC
Потребление (на клеммах нет нагрузки)	I _{DC1} (V _{DC} =15B)	200мА

2.3 – Дифференциальный вход кодирующего устройства

Напряжение питания	V _{CCIE}	5B÷24B
Напряжение входного сигнала	V _{IN}	±V _{CCIE}
Переключение входного порогового напряжение Lo/Hi		±1,2B
Потребление	V _{IN} = 5B V _{IN} = 12B V _{IN} = 24B	3мА 6мА 11мА
Входной импеданс	R _{IN}	2.2 кОм
Максимальная частота входного сигнала	F _{IN}	60кГц

2.4 – Двухтактный вход кодирующего устройства

Напряжение питания	V _{CCIE}	5B÷24B
Напряжение входного сигнала	V_{IN}	0B÷V _{CCIE}
Переключение входного порогового напряжения Lo/Hi		1,2B
Потребление	$V_{IN} = 5B$ $V_{IN} = 12B$ $V_{IN} = 24B$	4мА 10мА 20мА
Входной импеданс		1.2 кОм

2.5 – Драйвер выхода

Напряжение питания	V _{CCOE}	5B÷24B
Потребление	I _{OUT} = 0мА (нет нагрузки) I _{OUT} = канал 10мА I _{OUT} = канал 25мА	10MA 40MA 85MA
Максимальный ток, распределяемый каждым каналом ⁽¹⁾	I _{OUTMAX}	25мА
Максимальная частота		60кГц

 $^{^{(1)}}$ Максимальный распределенный ток зависит от рабочих условий платы как показано на графике на рисунке 6

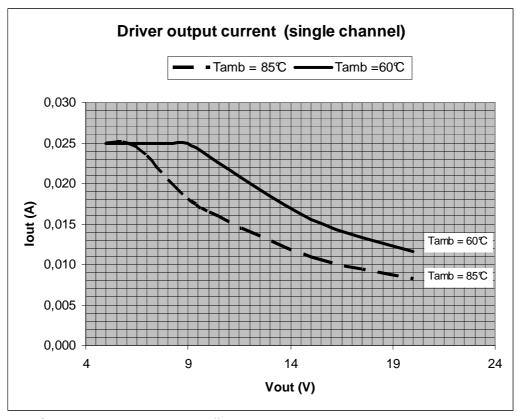


Рисунок 6 - ток, распределяемый каждым выходным дифференциальным каналом

2.6 - Цифровые входы

Напряжение питания	V _{CCI}	8B÷24B
Напряжение цифрового входа		0B÷V _{CCI}
Пороговое напряжение от Lo к Hi		tbd
Низкое пороговое напряжение		tbd
Потребление на входе	V _{CCI} = 24B	0.25мА
Максимальная частота входного сигнала		1кГц
Входной импеданс		100кОм
Напряжение цифрового выхода	V _{OUTIH} V _{OUTIL}	V _{CCI} 0.25B
Выходной ток	V _{OUTI} <=0,25V	20мА

2.7 - Регулируемые выходы питания

Выходное напряжение	$V_{ m REGx}$	8B÷(B _{DC} -2B)
Распределенный ток (2)	$ extsf{I}_{ ext{REGx}}$	300MA

 $^{^{(2)}}$ Максимальный распределенный ток зависит от рабочих условий, как показано на графике на рисунке 7

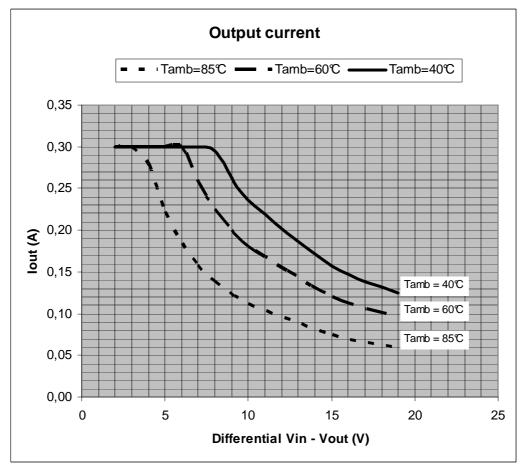
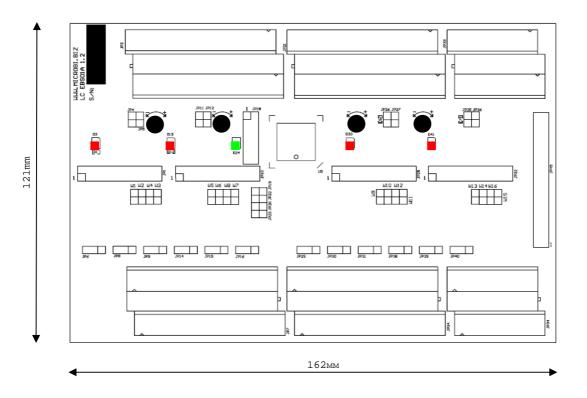



Рисунок 7 – Линейный регулятор регулируемого напряжения: ток, распределяемый относительно разницы напряжения между входом и выходом регулятора

2.8 – Механические размеры:

Габаритные размеры	Максимальная высота со вставленными клеммами	161x121x85мм
Клеммы	Тип вставки	Максимальное сечение провода 2,5мм ²

Указание конфигурационных перемычек

у казание конфиг	урационных перемычек
Jxx 🔲 🔾	Перемычка не вставлена
Jxx	Перемычка вставлена

Jxx = код, идентифицирующий перемычки

2.9 – Нумерация клемм

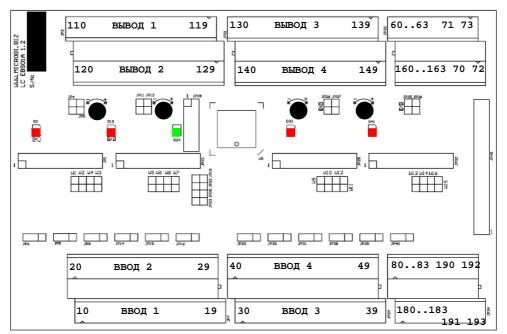


Рисунок 8 - нумерация клемм EBS01A

2.10 – Клеммы на стороне выхода (Верх)

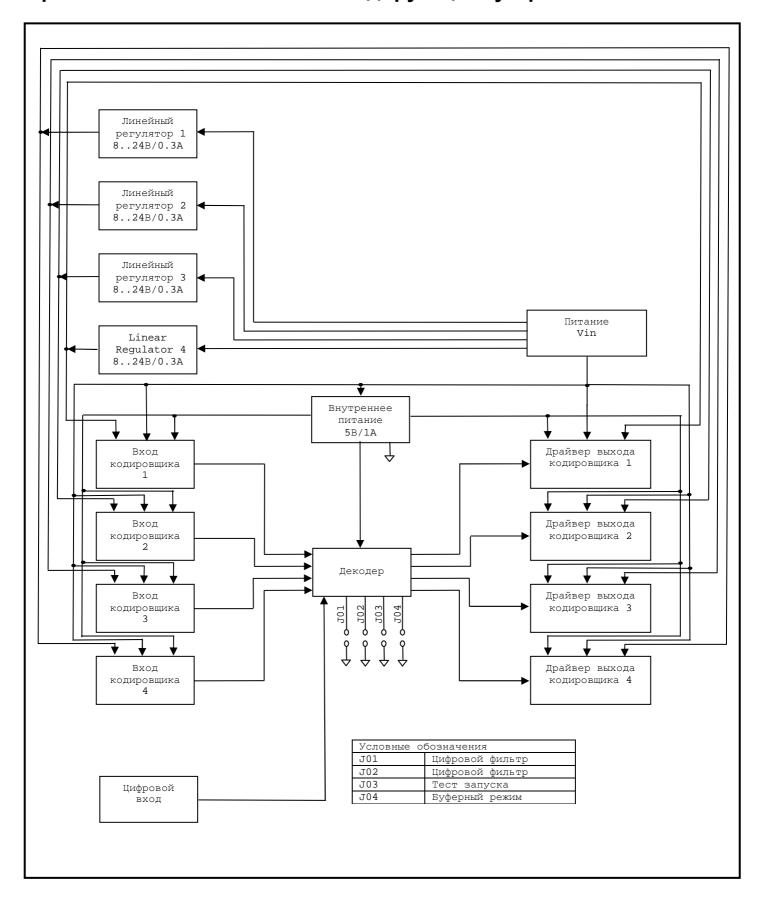
Таблица 3: Нумерация клемм на стороне выхода (верх)

, , , , , , , , , , , , , , , , , , ,	· /	,								
Выход драйвера 1 (ID = 110 ÷ 119)										
ID	110	111	112	113	114	115	116	117	118	119
сигнал	A+	A-	B+	B-	Z+	Z-	0V	V+	SHIELD	NC
			Выход	драйвер	oa 2 (ID	= 120	÷ 129)			
ID	120	121	122	123	124	125	126	127	128	129
сигнал	A+	A-	B+	B-	Z+	Z-	0V	V+	SHIELD	NC
			Выход	драйвер	oa 3 (ID	= 130	÷ 139)			
ID	130	131	132	133	134	135	136	137	138	13
сигнал	A+	A-	B+	B-	Z+	Z-	0V	V+	SHIELD	NC
Выход драйвера 4 (ID = 140 ÷ 149)										
ID	140	141	142	143	144	145	146	147	148	149
сигнал	A+	A-	B+	B-	Z+	Z-	0V	V+	SHIELD	NC

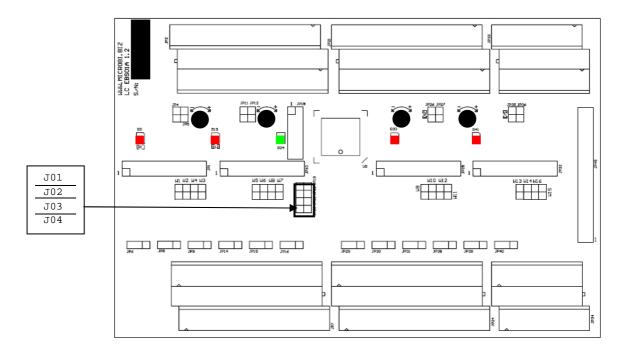
Цифровой вход(ID = 60 ÷ 63 160 ÷ 163 70 ÷ 73)							
ID	160	161	162	163	70	72	
сигнал	DOUT1	DOUT2	DOUT3	DOUT4	IN_0V	IN_0V	
ID	60	61	62	63	71	73	
сигнал	DIN1	DIN2	DIN3	DIN4	VDIN+	VDIN+	

	Клемма цифрового входа					
160	DOUT1	Выход обратной связи – цифровой вход 1				
161	DOUT2	Выход обратной связи – цифровой вход 2				
162	DOUT3	Выход обратной связи – цифровой вход 3				
163	DOUT4	Выход обратной связи – цифровой вход 4				
70	INGND	Обозначение регулятора цифрового входа – оптоизолированная				
70		сторона				
72	INGND	Обозначение регулятора цифрового входа – оптоизолированная				
7 2		сторона				
60	DIN1	Цифровой выход переключения 1				
61	DIN2	Цифровой выход переключения 2				
62	DIN3	Цифровой выход переключения 3				
63	DIN4	Цифровой выход переключения 4				
71	VDIN+	Оптоизолированная секция входа регулятора – цифровые входы				
73	VDIN+	Оптоизолированная секция входа регулятора – цифровые входы				

2.11 – Клеммы на стороне входа кодирующего устройства (Низ)

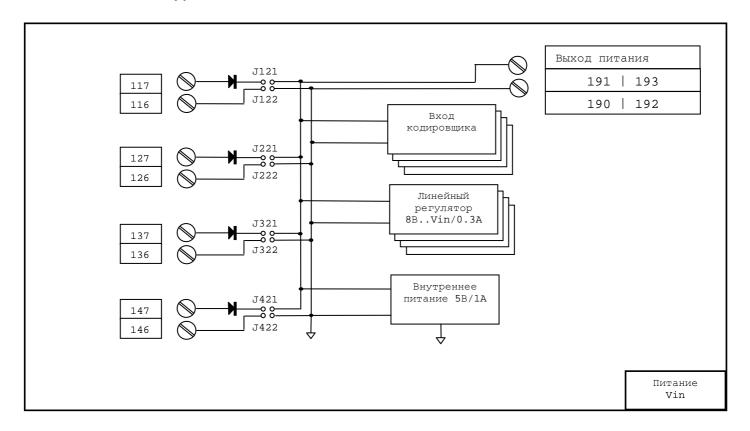

Таблица 3: Нумерация клемм на стороне входа (низ)

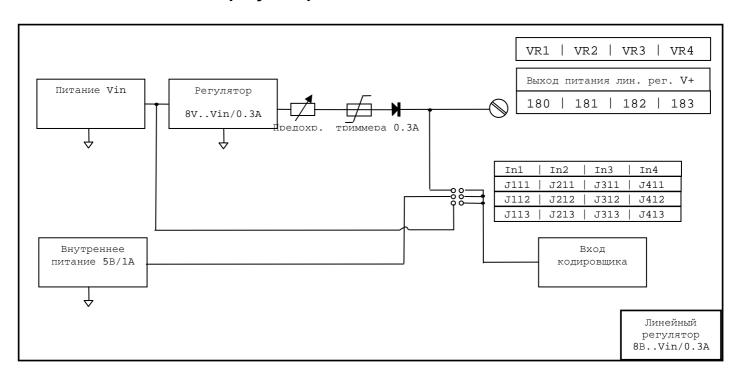
т иотпіди с	,, 11) 1110 pur	CHAIR ROTORINI	na cropone	виода (пп	3)					
Вход кодировщика 1 (ID = 10 ÷ 19)										
ID	10	11	12	13	14	15	16	17	18	19
сигнал	A+	A-	B+	B-	Z+	Z-	0V	V+	SHIELD	NC
Вход кодировщика 2 (ID = 20 ÷ 29)										
ID	20	21	22	23	24	25	26	27	28	29
сигнал	A+	A-	B+	B-	Z+	Z-	0V	V+	SHIELD	NC
			Вход	кодирови	щика 3 (ID = 30	÷ 39)			
ID	30	31	32	33	34	35	36	37	38	3
сигнал	A+	A-	B+	B-	Z+	Z-	0V	V+	SHIELD	NC
Вход кодировщика 4 (ID = 40 ÷ 49)										
ID	40	41	42	43	44	45	46	47	48	49
сигнал	A+	A-	B+	B-	Z+	Z-	0V	V+	SHIELD	NC


Вспомогательное питание(ID = 80 ÷ 83 180 ÷ 183 190 ÷ 193)							
ID 80 81 82 83 190 192							
сигнал	VDRV1	VDRV2	VDRV3	VDRV4	0V	0.0	
ID	ID 180 181 182 183 191 193						
сигнал	VREG1	VREG2	VREG3	VREG4	VPWR	VPWR	

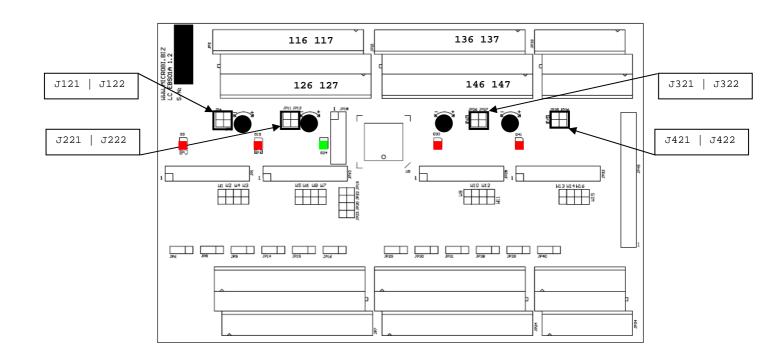
		Клемма вспомогательного питания
80	VDRV1	Вход регулятора привода 1
81	VDRV2	Вход регулятора привода 2
82	VDRV3	Вход регулятора привода 3
83	VDRV4	Вход регулятора привода 4
190	GND	Обозначение регулятора
192	GND	Обозначение регулятора
180	VREG1	Регулируемый выход регулятора 1
181	VREG2	Регулируемый выход регулятора 2
182	VREG3	Регулируемый выход регулятора 3
183	VREG4	Регулируемый выход регулятора 4
191	VPWR	Выход питания
193	VPWR	Выход питания

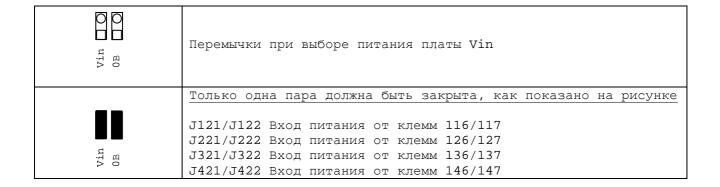
Приложение A EBS01 – Плата кодирующего устройства


А.1 – Положение перемычек при выборе режима работы

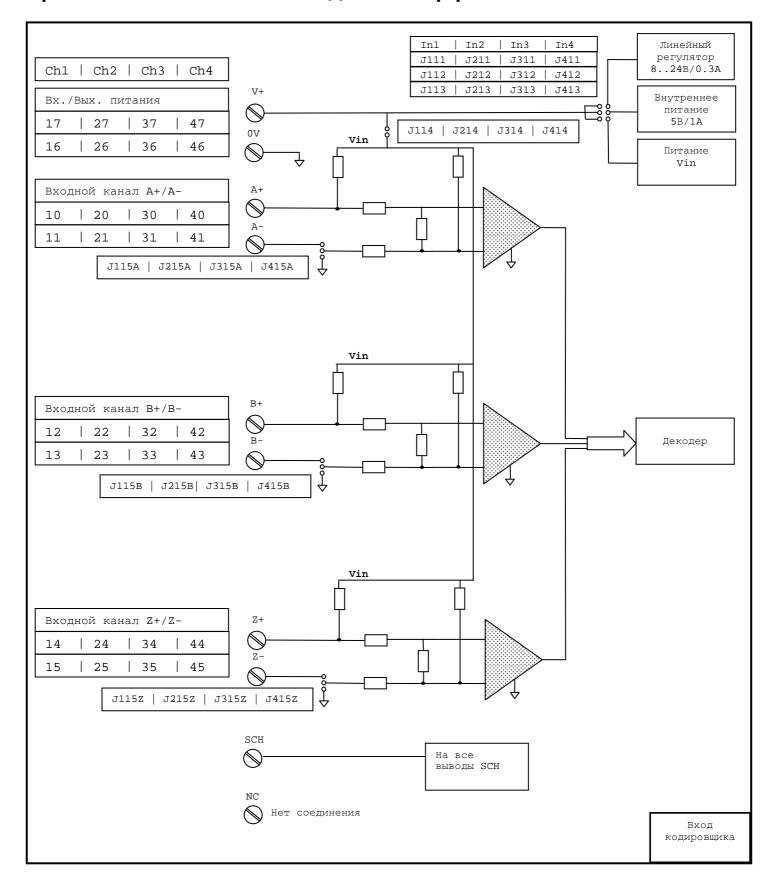

J01	Перемычки при выборе режима работы J01 J02 J03 J04
	Ј01/Ј02 выбор входного фильтра кодировщика
J01 🔲 🔾	задержка фильтра входного сигнала кодировщика 2 мкс
J01 🔲 🔾 J02	задержка фильтра входного сигнала кодировщика 4 мкс
J01	задержка фильтра входного сигнала кодировщика 8 мкс
J01 J02	задержка фильтра входного сигнала кодировщика 16 мкс
	выбор режима работы J03/J04
J03 🔲 🔾	режим «SI split1»
J03 🔲 🔾 J04	режим «SII split2»
J03	Буферный режим
J03	Тестовый режим. Выходы моделируют сигналы кодировщика на 32 импульсах/циклах на частоте в 31,5кГц

Приложение В -

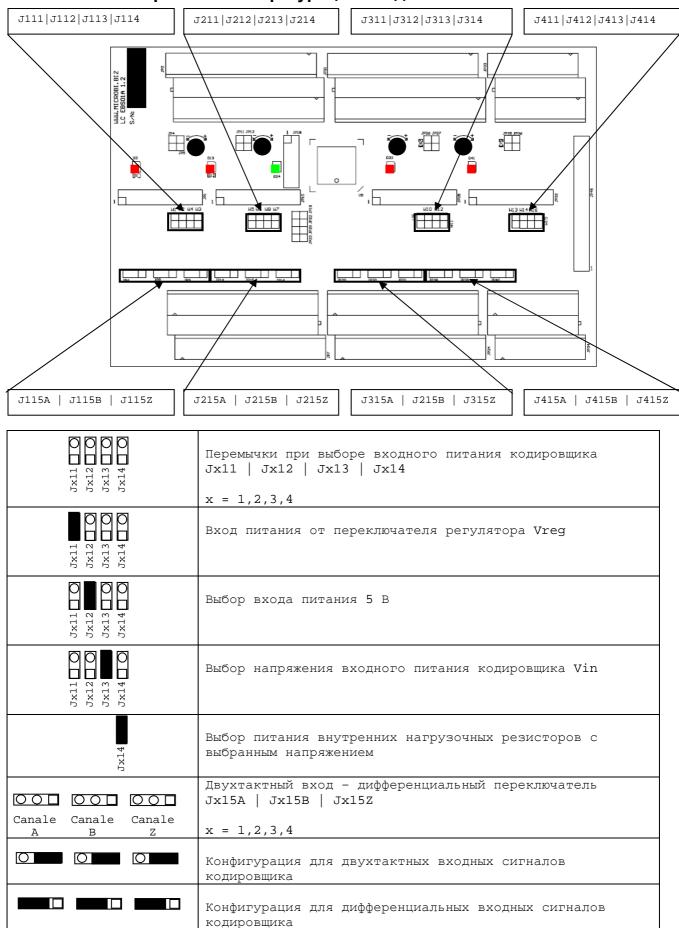

В.1 - EBS01 - Вход питания

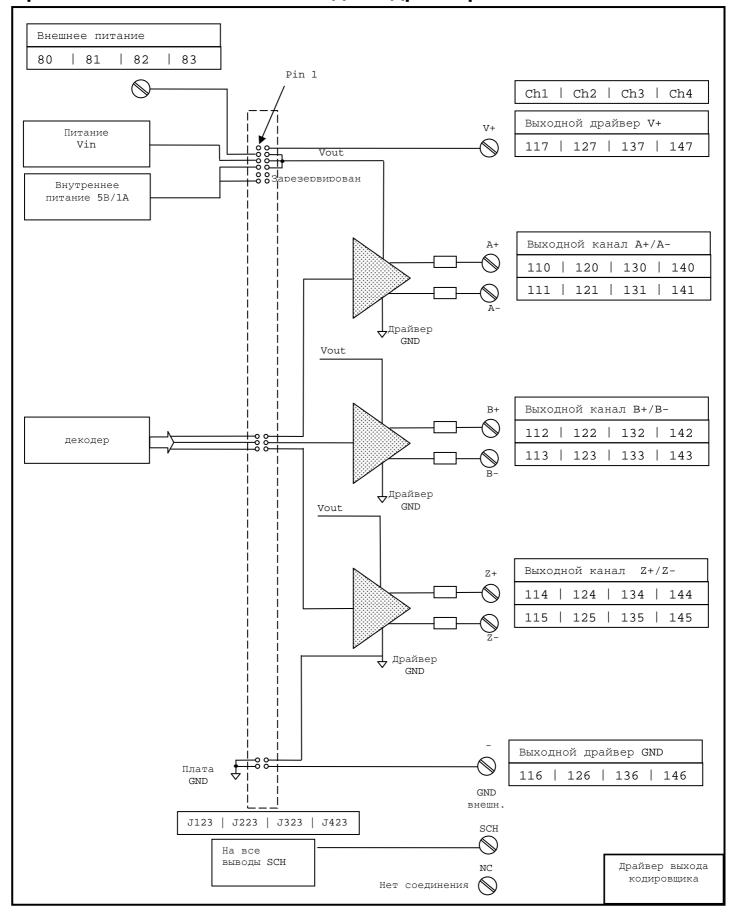


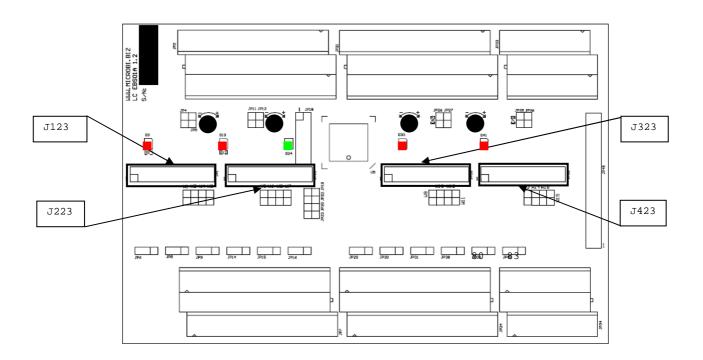
В.2 - EBS01 – Линейный регулятор



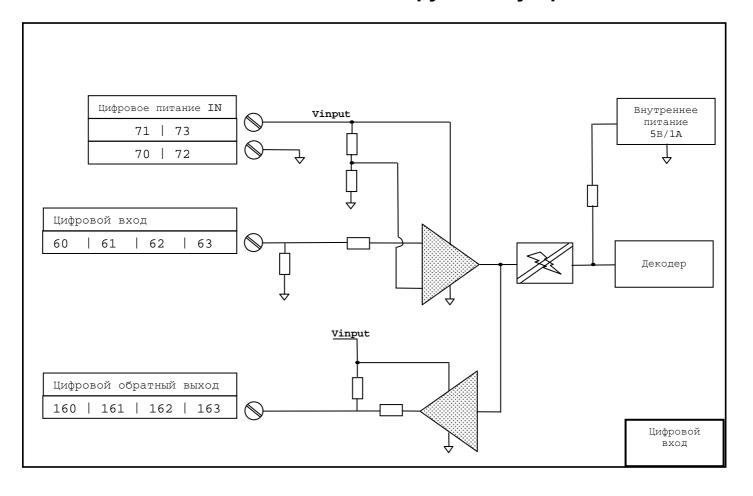
В.3 – Положение перемычек при выборе питания платы



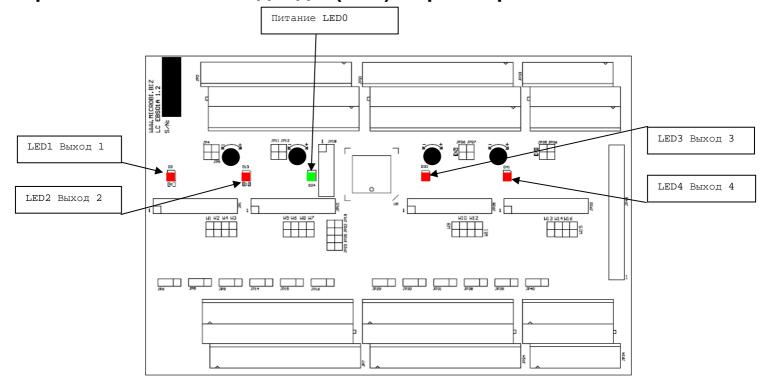

Приложение C - EBS01 - Входной интерфейс

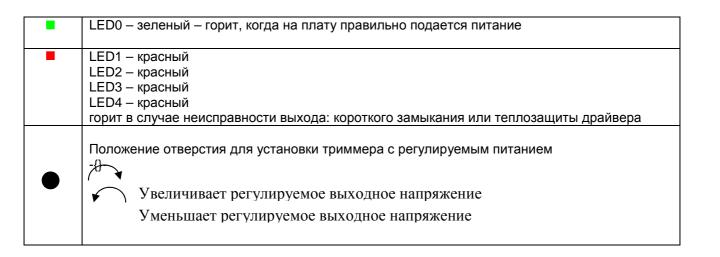

С.1 – Положение перемычек конфигурации входа

Приложение D - EBS01 – Выходной драйвер



D.1 – Положение перемычек при конфигурации выхода (сторона пользователя драйвера выхода)




Vext C C C C C C C C C	Перемычки конфигурации выхода
Vext TO Vin TO SV TO ChA ChB ChB ChB ChC VIN TO ChC VIN	Конфигурация для питания выхода от клемм Vext на клемму вспомогательного питания. Используется для питания выходной цепи через линейный регулятор. (напр. чтобы использовать VR2 на первом выходе, соедините клемму 181 с клеммой 80). Соединение см. схему обозначения питания на стр. 8.
vext CO	Конфигурация для питания выхода от напряжения платы Vin. (Выбор клемм питания платы см. в Приложении В.)
Vext O Vext C ChA ChA ChA ChA ChA ChA ChA ChA ChA C	Конфигурация для выходов питания 5В

Приложение E - EBS01 – Цифровые входы для выбора соединенных входных каналов кодирующего устройства

Приложение F – Светодиоды (LED) и триммеры

Приложение G – Перемычки на плате EBS01A ред. 1.1

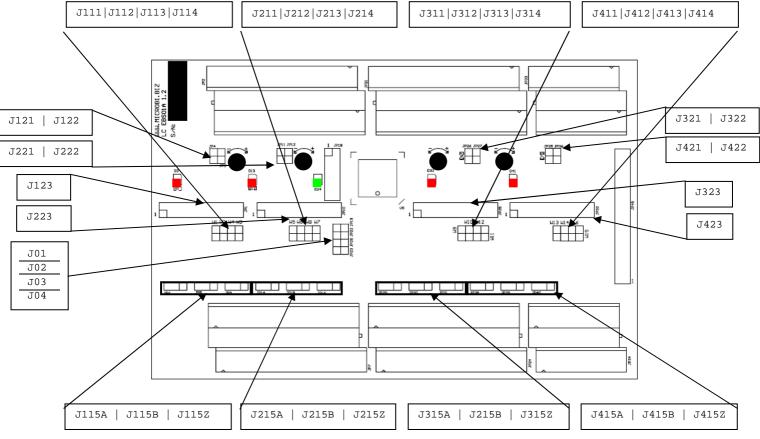
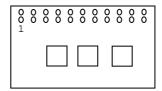



Рисунок 4 – EBS01A положение конфигурационных перемычек

Приложение Н – Адаптер для оптоизолированных выходов

Адаптер для оптоизолированных выходов должен вставляться непосредственно на соединитель Jx23 (x=1, 2, 3, 4) для изоляции выхода. Контрольная отметка «1» должна совпадать с контрольной точкой, напечатанной на соединителе на плате EBS01A. Секция выхода для изолированного канала должна питаться отдельно от клемм питания 1x6,1x7 (x=1,2,3,4).

На рисунке 3 показана плата EBS01A с оптоизолирующими адаптерами, установленными на выходы 1 и 3

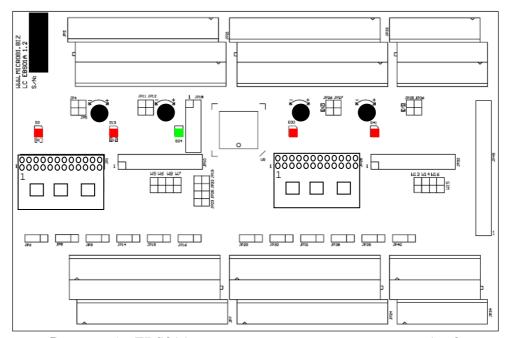


Рисунок 5 – EBS01A с оптоизолированными каналами 1 и 3

Установка_____ Код____

	T
J01 J02 J03 J04 J01	Режим работы (J01 J02) □SPLIT1 □SPLIT2 □БУФЕРНЫЙ □ТЕСТОВЫЙ Фильтр сбора (J03 J04) □2мкс □4мкс □8мкс □16мкс
	Питанио плати (Vin)
Vin Vin Vin Vin 116/117 126/127 136/137 146/147	Питание платы (Vin) □ 116/117 B= □ 126/127 B=
99 99 99	□136/137 B=
Vin Vin Vin Vin OB OB OB OB OB OB OB	Нумерация клемм питания Предупреждение: Только одна пара должна быть закрыта
0000 000 000 000 000 J115A J115B J115Z	Питание входа №1 □ Vreg1 V= □ 5В □ Vin
BXOU №1	Конфигурация входа № 1 □Дифференциальная □Двухтактная
J215A J215B J215Z	Питание входа № 2 □ Vreg2 V= □ 5В □ Vin Конфигурация входа № 2
ВХОД №2	□Дифференциальная □Двухтактная
DOD	Питание входа № 3 □ Vreg3 V= □ 5В □ Vin Конфигурация входа № 3 □ Дифференциальная □ Двухтактная
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Питание входа № 4 □ Vreg4 V= □ 5B □ Vin Конфигурация входа № 4 □ Дифференциальная □ Двухтактная
1	Питание выхода №1 Vin 5В
J223 1	Питание выхода № 2 Vin 5V
J323 1	Питание выхода № 3 Vin 5V V=
T423 1 Aext Ain	Питание выхода № 4 □Vin □5V □Vreg n° V= Клеммы: □Vext V= □80 □180 □81 □181 □82 □182 □Оптоизолированный V= □84 □183

Лата		